
Dr. SNS RAJALAKSHMI COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

Accredited by NAAC (Cycle III) with ‘A+’ Grade Affiliated to

Bharathiar University

Coimbatore-641049

DEPARTMENT OF COMPUTER APPLICATIONS

III BCA

WEB DEDIGNING-16UCA504

PREPARED BY: Mr.Lalitha

UNIT-V

UNIT-V

What is xml

o Xml (eXtensible Markup Language) is a mark up language.

o XML is designed to store and transport data.

o Xml was released in late 90’s. it was created to provide an easy to use and store self describing data.

o XML became a W3C Recommendation on February 10, 1998.

o XML is not a replacement for HTML.

o XML is designed to be self-descriptive.

o XML is designed to carry data, not to display data.

o XML tags are not predefined. You must define your own tags.

o XML is platform independent and language independent.

What is mark-up language

A mark up language is a modern system for highlight or underline a document.

Students often underline or highlight a passage to revise easily, same in the sense of modern mark up

language highlighting or underlining is replaced by tags.

Why xml

Platform Independent and Language Independent: The main benefit of xml is that you can use it to take

data from a program like Microsoft SQL, convert it into XML then share that XML with other programs and

platforms. You can communicate between two platforms which are generally very difficult. The main thing

which makes XML truly powerful is its international acceptance. Many corporation use XML interfaces for

databases, programming, office application mobile phones and more. It is due to its platform independent

feature.

Features and Advantages of XML

XML is widely used in the era of web development. It is also used to simplify data storage and data sharing.

The main features or advantages of XML are given below.

1) XML separates data from HTML

If you need to display dynamic data in your HTML document, it will take a lot of work to edit the HTML

each time the data changes.

With XML, data can be stored in separate XML files. This way you can focus on using HTML/CSS for

display and layout, and be sure that changes in the underlying data will not require any changes to the HTML.

With a few lines of JavaScript code, you can read an external XML file and update the data content of your

web page.

2) XML simplifies data sharing

In the real world, computer systems and databases contain data in incompatible formats.

XML data is stored in plain text format. This provides a software- and hardware-independent way of storing

data.

This makes it much easier to create data that can be shared by different applications.

3) XML simplifies data transport

One of the most time-consuming challenges for developers is to exchange data between incompatible systems

over the Internet.

Exchanging data as XML greatly reduces this complexity, since the data can be read by different incompatible

applications.

Character and mark up:

Markup text is enclosed in angle brackets (< and >). Character data (sometimes called element content) is the

text delimited by the start tag and end tag.

XML stands for extensible markup language. A markup language is a set of codes, or tags, that describes the

text in a digital document. The most famous markup language is hypertext markup language (HTML), which

is used to format Web pages.

XML documents are composed of markup and content. Using these two fundamental building blocks an

XML document can be used to represent a wide variety of data ranging from software GUI files to high end

technical publications.

There are six kinds of markup that can occur in an XML document: elements, entity references, comments,

processing instructions, marked sections, and document type declarations.

Elements :

 These are the most common form of markup. Delimited by angle brackets, most elements identify

the nature of the content they surround. Some elements may be empty in which case they have no

content. If an element is not empty, it begins with a start-tag, <element>, and ends with an end-

tag, </element>.

Attributes :

 These are name-value pairs that occur inside start-tags after the element name. For

example <fontdata classtype="bold"> is a fontdata element with the attribute classtype having

the value bold. In XML, all attribute values must be quoted.

Entity References :

 The XML specification reserves the use of certain characters such as < and >. In order to insert

these characters into your document as content, there must be an alternative way to represent them.

In XML, entities are used to represent these special characters. Entities are also used to refer to

often repeated or varying text and to include the content of external files.

Every entity must have a unique name. In order to use an entity, you simply reference it by name.

Entity references begin with the ampersand and end with a semicolon.

For example, the lt entity inserts a literal < into a document. So the string <element> can be

represented in an XML document as <element>.

A special form of entity reference, called a character reference, can be used to insert arbitrary

Unicode characters into your document. This is a mechanism for inserting characters that cannot be

typed directly on your keyboard.

Character references take one of two forms: decimal references, ℞, and hexadecimal

references, ℞. Both of these refer to character number U+211E from Unicode.

Comments :

 These begin with <!-- and end with -->. Comments can contain any data except the literal string --.

You can place comments between markup anywhere in your document.

Comments are not part of the textual content of an XML document and are displayed in Alchemy

CATALYST as locked strings.

Processing Instructions :

 Commonly referred to as PI instructions, they provide an escape hatch used to send raw data to an

XML application. Like comments, they are not textually part of the XML document, but the XML

processor is required to pass them to an application. Processing instructions have the

form: <?name pidata?>. The name, called the PI target, identifies the PI to the application.

Applications should process only the targets they recognize and ignore all other PIs.

Any data that follows the PI target is optional, it is for the application that recognizes the target.

The names used in PIs may be declared as notations in order to formally identify them. PI names

beginning with xml are reserved for XML standardization.

CDATA Sections :

 In a document, a CDATA section instructs the parser to ignore most markup characters.

Consider a source code listing in an XML document. It might contain characters that the XML

parser would ordinarily recognize as markup (< and &, for example). In order to prevent this, a

CDATA section can be used.

<![CDATA[*p = &q;b = (i <= 3);]]>

Between the start of the section, <![CDATA[and the end of the section,]]>, all character data is

passed directly to the application, without interpretation. Elements, entity references, comments,

and processing instructions are all unrecognized and the characters that comprise them are passed

literally to the application.

XML Namespaces

XML Namespaces provide a method to avoid element name conflicts.

Name Conflicts

In XML, element names are defined by the developer. This often results in a conflict when trying to mix XML

documents from different XML applications.

This XML carries HTML table information:

<table>

 <tr>

 <td>Apples</td>

 <td>Bananas</td>

 </tr>

</table>

This XML carries information about a table (a piece of furniture):

<table>

 <name>African Coffee Table</name>

 <width>80</width>

 <length>120</length>

</table>

If these XML fragments were added together, there would be a name conflict. Both contain a <table> element,

but the elements have different content and meaning.

A user or an XML application will not know how to handle these differences.

Solving the Name Conflict Using a Prefix

Name conflicts in XML can easily be avoided using a name prefix.

This XML carries information about an HTML table, and a piece of furniture:

<h:table>

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

<f:table>

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

In the example above, there will be no conflict because the two <table> elements have different names.

XML Namespaces - The xmlns Attribute

When using prefixes in XML, a namespace for the prefix must be defined.

The namespace can be defined by an xmlns attribute in the start tag of an element.

The namespace declaration has the following syntax. xmlns:prefix="URI".

<root>

<h:table xmlns:h="http://www.w3.org/TR/html4/">

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

<f:table xmlns:f="https://www.w3schools.com/furniture">

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

</root>

In the example above:

The xmlns attribute in the first <table> element gives the h: prefix a qualified namespace.

The xmlns attribute in the second <table> element gives the f: prefix a qualified namespace.

When a namespace is defined for an element, all child elements with the same prefix are associated with the

same namespace.

Namespaces can also be declared in the XML root element:

<root xmlns:h="http://www.w3.org/TR/html4/"

xmlns:f="https://www.w3schools.com/furniture">

<h:table>

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

<f:table>

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

</root>

Note: The namespace URI is not used by the parser to look up information.

The purpose of using an URI is to give the namespace a unique name.

However, companies often use the namespace as a pointer to a web page containing namespace information.

Uniform Resource Identifier (URI)

A Uniform Resource Identifier (URI) is a string of characters which identifies an Internet Resource.

The most common URI is the Uniform Resource Locator (URL) which identifies an Internet domain

address. Another, not so common type of URI is the Uniform Resource Name (URN).

Default Namespaces

Defining a default namespace for an element saves us from using prefixes in all the child elements. It has the

following syntax:

xmlns="namespaceURI"

This XML carries HTML table information:

<table xmlns="http://www.w3.org/TR/html4/">

 <tr>

 <td>Apples</td>

 <td>Bananas</td>

 </tr>

</table>

This XML carries information about a piece of furniture:

<table xmlns="https://www.w3schools.com/furniture">

 <name>African Coffee Table</name>

 <width>80</width>

 <length>120</length>

</table>

Namespaces in Real Use

XSLT is a language that can be used to transform XML documents into other formats.

The XML document below, is a document used to transform XML into HTML.

The namespace "http://www.w3.org/1999/XSL/Transform" identifies XSLT elements inside an HTML

document:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<body>

 <h2>My CD Collection</h2>

 <table border="1">

 <tr>

 <th style="text-align:left">Title</th>

 <th style="text-align:left">Artist</th>

 </tr>

 <xsl:for-each select="catalog/cd">

 <tr>

 <td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="artist"/></td>

 </tr>

 </xsl:for-each>

 </table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

XML DTD

An XML document with correct syntax is called "Well Formed".

An XML document validated against a DTD is both "Well Formed" and "Valid".

What is a DTD?

DTD stands for Document Type Definition.

A DTD defines the structure and the legal elements and attributes of an XML document.

Valid XML Documents

A "Valid" XML document is "Well Formed", as well as it conforms to the rules of a DTD:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE note SYSTEM "Note.dtd">

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

The DOCTYPE declaration above contains a reference to a DTD file. The content of the DTD file is shown

and explained below.

XML DTD

The purpose of a DTD is to define the structure and the legal elements and attributes of an XML document:

Note.dtd:

<!DOCTYPE note

[

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

The DTD above is interpreted like this:

 !DOCTYPE note - Defines that the root element of the document is note

 !ELEMENT note - Defines that the note element must contain the elements: "to, from, heading, body"

 !ELEMENT to - Defines the to element to be of type "#PCDATA"

 !ELEMENT from - Defines the from element to be of type "#PCDATA"

 !ELEMENT heading - Defines the heading element to be of type "#PCDATA"

 !ELEMENT body - Defines the body element to be of type "#PCDATA"

Using DTD for Entity Declaration

A DOCTYPE declaration can also be used to define special characters or strings, used in the document:

Example

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE note [

<!ENTITY nbsp " ">

<!ENTITY writer "Writer: Donald Duck.">

<!ENTITY copyright "Copyright: W3Schools.">

]>

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

<footer>&writer; ©right;</footer>

</note>

When to Use a DTD?

With a DTD, independent groups of people can agree to use a standard DTD for interchanging data.

With a DTD, you can verify that the data you receive from the outside world is valid.

You can also use a DTD to verify your own data.

XML Information Set

XML Information Set (XML Infoset) is a W3C specification describing an abstract data model of

an XML document in terms of a set of information items.[1] The definitions in the XML Information Set

specification are meant to be used in other specifications that need to refer to the information in a well-formed

XML document.

An XML document has an information set if it is well-formed and satisfies the namespace constraints. There

is no requirement for an XML document to be valid in order to have an information set.

An information set can contain up to eleven different types of information items:

1. The Document Information Item (always present)

2. Element Information Items

3. Attribute Information Items

4. Processing Instruction Information Items

5. Unexpanded Entity Reference Information Items

6. Character Information Items

7. Comment Information Items

8. The Document Type Declaration Information Item

9. Unparsed Entity Information Items

10. Notation Information Items

11. Namespace Information Items

XML was initially developed without a formal definition of its infoset. This was only formalised by later work

beginning in 1999, first published as a separate W3C Working Draft at the end of December that

year.[2] Infoset recommendation Second Edition was adopted on 4 February, 2004.[3] If a 2.0 version of the

XML standard is ever published, it is likely that this would absorb the Infoset recommendation as an integral

part of that standard.

Infoset augmentation:

Infoset augmentation or infoset modification refers to the process of modifying the infoset

during schema validation, for example by adding default attributes. The augmented infoset is called the post-

schema-validation infoset, or PSVI. [4]

Infoset augmentation is somewhat controversial, with claims that it is a violation of modularity and tends to

cause interoperability problems, since applications get different information depending on whether or not

validation has been performed. [5]

XML Parsers

https://en.wikipedia.org/wiki/W3C_recommendation
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XML_Information_Set#cite_note-1
https://en.wikipedia.org/wiki/Well-formed_XML_document
https://en.wikipedia.org/wiki/Well-formed_XML_document
https://en.wikipedia.org/wiki/Well-formed_XML_document
https://en.wikipedia.org/wiki/XML_namespace
https://en.wikipedia.org/wiki/XML#Schemas_and_validation
https://en.wikipedia.org/wiki/Processing_Instruction
https://en.wikipedia.org/wiki/XML_namespace
https://en.wikipedia.org/wiki/XML_Information_Set#cite_note-2
https://en.wikipedia.org/wiki/XML_Information_Set#cite_note-3
https://en.wikipedia.org/wiki/XML_schema
https://en.wikipedia.org/wiki/PSVI
https://en.wikipedia.org/wiki/XML_Information_Set#cite_note-4
https://en.wikipedia.org/wiki/XML_Information_Set#cite_note-5

An XML parser is a software library or package that provides interfaces for client applications to work with

an XML document. The XML Parser is designed to read the XML and create a way for programs to use XML.

XML parser validates the document and check that the document is well formatted.

Let's understand the working of XML parser by the figure given below:

Types of XML Parsers

These are the two main types of XML Parsers:

1. DOM

2. SAX

DOM (Document Object Model)

A DOM document is an object which contains all the information of an XML document. It is composed like a

tree structure. The DOM Parser implements a DOM API. This API is very simple to use.

Features of DOM Parser

A DOM Parser creates an internal structure in memory which is a DOM document object and the client

applications get information of the original XML document by invoking methods on this document object.

DOM Parser has a tree based structure.

Advantages

1) It supports both read and write operations and the API is very simple to use.

2) It is preferred when random access to widely separated parts of a document is required.

Disadvantages

1) It is memory inefficient. (consumes more memory because the whole XML document needs to loaded into

memory).

2) It is comparatively slower than other parsers.

SAX (Simple API for XML)

A SAX Parser implements SAX API. This API is an event based API and less intuitive.

Features of SAX Parser

It does not create any internal structure.

Clients does not know what methods to call, they just overrides the methods of the API and place his own

code inside method.

It is an event based parser, it works like an event handler in Java.

Advantages

1) It is simple and memory efficient.

2) It is very fast and works for huge documents.

Disadvantages

1) It is event-based so its API is less intuitive.

2) Clients never know the full information because the data is broken into pieces.

What is an XML Schema?

An XML Schema describes the structure of an XML document.

The XML Schema language is also referred to as XML Schema Definition (XSD).

XSD Example

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="note">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="to" type="xs:string"/>

 <xs:element name="from" type="xs:string"/>

 <xs:element name="heading" type="xs:string"/>

 <xs:element name="body" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

The purpose of an XML Schema is to define the legal building blocks of an XML document:

 the elements and attributes that can appear in a document

 the number of (and order of) child elements

 data types for elements and attributes

 default and fixed values for elements and attributes

Why Learn XML Schema?

In the XML world, hundreds of standardized XML formats are in daily use.

Many of these XML standards are defined by XML Schemas.

XML Schema is an XML-based (and more powerful) alternative to DTD.

XML Schemas Support Data Types

One of the greatest strength of XML Schemas is the support for data types.

 It is easier to describe allowable document content

 It is easier to validate the correctness of data

 It is easier to define data facets (restrictions on data)

 It is easier to define data patterns (data formats)

 It is easier to convert data between different data types

DTD - Overview

XML Document Type Declaration, commonly known as DTD, is a way to describe precisely the XML

language. DTDs check the validity of structure and vocabulary of an XML document against the grammatical

rules of the appropriate XML language.

An XML document can be defined as −

 Well-formed − If the XML document adheres to all the general XML rules such as tags must be

properly nested, opening and closing tags must be balanced, and empty tags must end with '/>', then it

is called as well-formed.

OR

 Valid − An XML document said to be valid when it is not only well-formed, but it also conforms to

available DTD that specifies which tags it uses, what attributes those tags can contain, and which tags

can occur inside other tags, among other properties.

The following diagram represents that a DTD is used to structure the XML document −

Types

DTD can be classified on its declaration basis in the XML document, such as −

 Internal DTD

 External DTD

When a DTD is declared within the file it is called Internal DTD and if it is declared in a separate file it is

called External DTD.

We will learn more about these in the chapter DTD Syntax

Features

Following are some important points that a DTD describes −

 the elements that can appear in an XML document.

 the order in which they can appear.

 optional and mandatory elements.

 element attributes and whether they are optional or mandatory.

 whether attributes can have default values.

https://www.tutorialspoint.com/dtd/dtd_syntax.htm

Advantages of using DTD

 Documentation − You can define your own format for the XML files. Looking at this document a

user/developer can understand the structure of the data.

 Validation − It gives a way to check the validity of XML files by checking whether the elements

appear in the right order, mandatory elements and attributes are in place, the elements and attributes

have not been inserted in an incorrect way, and so on.

Disadvantages of using DTD

 It does not support the namespaces. Namespace is a mechanism by which element and attribute

names can be assigned to groups. However, in a DTD namespaces have to be defined within the DTD,

which violates the purpose of using namespaces.

 It supports only the text string data type.

 It is not object oriented. Hence, the concept of inheritance cannot be applied on the DTDs.

An XML DTD can be either specified inside the document, or it can be kept in a separate document and then

the document can be linked to the DTD document to use it.

Syntax

Basic syntax of a DTD is as follows −

<!DOCTYPE element DTD identifier

[

 declaration1

 declaration2

]>

In the above syntax −

 DTD starts with <!DOCTYPE delimiter.

 An element tells the parser to parse the document from the specified root element.

 DTD identifier is an identifier for the document type definition, which may be the path to a file on the

system or URL to a file on the internet. If the DTD is pointing to external path, it is called external

subset.

 The square brackets [] enclose an optional list of entity declarations called internal subset.

Internal DTD

A DTD is referred to as an internal DTD if elements are declared within the XML files. To reference it as

internal DTD, standalone attribute in XML declaration must be set to yes. This means the declaration works

independent of external source.

Syntax

The syntax of internal DTD is as shown −

<!DOCTYPE root-element [element-declarations]>

where root-element is the name of root element and element-declarations is where you declare the elements.

Example

Following is a simple example of internal DTD −

<?xml version = "1.0" encoding = "UTF-8" standalone = "yes" ?>

<!DOCTYPE address [

 <!ELEMENT address (name,company,phone)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT company (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

]>

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

Let us go through the above code −

Start Declaration − Begin the XML declaration with following statement.

<?xml version = "1.0" encoding = "UTF-8" standalone = "yes" ?>

DTD − Immediately after the XML header, the document type declaration follows, commonly referred to as

the DOCTYPE −

<!DOCTYPE address [

The DOCTYPE declaration has an exclamation mark (!) at the start of the element name. The DOCTYPE

informs the parser that a DTD is associated with this XML document.

DTD Body − The DOCTYPE declaration is followed by body of the DTD, where you declare elements,

attributes, entities, and notations −

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone_no (#PCDATA)>

Several elements are declared here that make up the vocabulary of the <name> document. <!ELEMENT name

(#PCDATA)> defines the element name to be of type "#PCDATA". Here #PCDATA means parse-able text

data.

End Declaration − Finally, the declaration section of the DTD is closed using a closing bracket and a closing

angle bracket (]>). This effectively ends the definition, and thereafter, the XML document follows

immediately.

Rules

 The document type declaration must appear at the start of the document (preceded only by the XML

header) - it is not permitted anywhere else within the document.

 Similar to the DOCTYPE declaration, the element declarations must start with an exclamation mark.

 The Name in the document type declaration must match the element type of the root element.

External DTD

In external DTD elements are declared outside the XML file. They are accessed by specifying the system

attributes which may be either the legal .dtd file or a valid URL. To reference it as external

DTD, standalone attribute in the XML declaration must be set as no. This means, declaration includes

information from the external source.

Syntax

Following is the syntax for external DTD −

<!DOCTYPE root-element SYSTEM "file-name">

where file-name is the file with .dtd extension.

Example

The following example shows external DTD usage −

<?xml version = "1.0" encoding = "UTF-8" standalone = "no" ?>

<!DOCTYPE address SYSTEM "address.dtd">

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

The content of the DTD file address.dtd are as shown −

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

Types

You can refer to an external DTD by either using system identifiers or public identifiers.

System Identifiers

A system identifier enables you to specify the location of an external file containing DTD declarations. Syntax

is as follows −

<!DOCTYPE name SYSTEM "address.dtd" [...]>

As you can see it contains keyword SYSTEM and a URI reference pointing to the location of the document.

Public Identifiers

Public identifiers provide a mechanism to locate DTD resources and are written as below −

<!DOCTYPE name PUBLIC "-//Beginning XML//DTD Address Example//EN">

As you can see, it begins with keyword PUBLIC, followed by a specialized identifier. Public identifiers are

used to identify an entry in a catalog. Public identifiers can follow any format, however, a commonly used

format is called Formal Public Identifiers, or FPIs.

XML components −

 Element

 Attributes

 Entities

Elements

XML elements can be defined as building blocks of an XML document. Elements can behave as a container to

hold text, elements, attributes, media objects or mix of all.

Each XML document contains one or more elements, the boundaries of which are either delimited by start-

tags and end-tags, or empty elements.

Example

Below is a simple example of XML elements

<name>

 Tutorials Point

</name>

As you can see we have defined a <name> tag. There's a text between start and end tag of <name>. Elements,

when used in an XML-DTD, need to be declared which will be discussed in detail in the chapter DTD

Elements.

Attributes

Attributes are part of the XML elements. An element can have any number of unique attributes. Attributes

give more information about the XML element or more precisely it defines a property of the element. An

XML attribute is always a name-value pair.

Example

Below is a simple example of XML attributes −

Here img is the element name whereas src is an attribute name and flower.jpg is a value given for the

attribute src.

If attributes are used in an XML DTD then these need to be declared which will be discussed in detail in the

chapter DTD Attributes

https://www.tutorialspoint.com/dtd/dtd_elements.htm
https://www.tutorialspoint.com/dtd/dtd_elements.htm
https://www.tutorialspoint.com/dtd/dtd_attributes.htm

Entities

Entities are placeholders in XML. These can be declared in the document prolog or in a DTD. Entities can be

primarily categorized as −

 Built-in entities

 Character entities

 General entities

 Parameter entities

There are five built-in entities that play in well-formed XML, they are −

 ampersand: &

 Single quote: '

 Greater than: >

 Less than: <

 Double quote: "

XML elements can be defined as building blocks of an XML document. Elements can behave as a container to

hold text, elements, attributes, media objects or mix of all.

A DTD element is declared with an ELEMENT declaration. When an XML file is validated by DTD, parser

initially checks for the root element and then the child elements are validated.

Syntax

All DTD element declarations have this general form −

<!ELEMENT elementname (content)>

 ELEMENT declaration is used to indicate the parser that you are about to define an element.

 elementname is the element name (also called the generic identifier) that you are defining.

 content defines what content (if any) can go within the element.

Element Content Types

Content of elements declaration in a DTD can be categorized as below −

 Empty content

 Element content

 Mixed content

 Any content

Empty Content

This is a special case of element declaration. This element declaration does not contain any content. These are

declared with the keyword EMPTY.

Syntax

Following is the syntax for empty element declaration −

<!ELEMENT elementname EMPTY >

In the above syntax −

 ELEMENT is the element declaration of category EMPTY

 elementname is the name of empty element.

Example

Following is a simple example demonstrating empty element declaration −

<?xml version = "1.0"?>

<!DOCTYPE hr[

 <!ELEMENT address EMPTY>

]>

<address />

In this example address is declared as an empty element. The markup for address element would appear as

<address />.

Element Content

In element declaration with element content, the content would be allowable elements within parentheses. We

can also include more than one element.

Syntax

Following is a syntax of element declaration with element content −

<!ELEMENT elementname (child1, child2...)>

 ELEMENT is the element declaration tag

 elementname is the name of the element.

 child1, child2.. are the elements and each element must have its own definition within the DTD.

Example

Below example demonstrates a simple example for element declaration with element content −

<?xml version = "1.0" encoding = "UTF-8" standalone = "yes" ?>

<!DOCTYPE address [

 <!ELEMENT address (name,company,phone)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT company (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

]>

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

In the above example, address is the parent element and name, company and phone_no are its child elements.

List of Operators and Syntax Rules

Below table shows the list of operators and syntax rules which can be applied in defining child elements −

Operator Syntax Description Example

+ <!ELEMENT

element-name

(child1+)>

It indicates that child

element can occur one

or more times inside

parent element.

<!ELEMENT address (name+)>

Child element name can occur one

or more times inside the element

name address.

* <!ELEMENT

element-name

(child1*)>

It indicates that child

element can occur

zero or more times

inside parent element.

<!ELEMENT address (name*)>

Child element name can occur

zero or more times inside the

element name address.

? <!ELEMENT

element-name

(child1?)>

It indicates that child

element can occur

zero or one time

inside parent element.

<!ELEMENT address (name?)>

Child element name can occur

zero or one time inside the

element name address.

, <!ELEMENT

element-name (child1,

child2)>

It gives sequence of

child elements

separated by comma

which must be

included in the the

element-name.

<!ELEMENT address (name,

company)>

Sequence of child

elements name, company, which

must occur in the same order

inside the element name address.

| <!ELEMENT

element-name (child1

| child2)>

It allows making

choices in the child

element.

<!ELEMENT address (name |

company)>

It allows you to choose either of

child elements

i.e. name or company, which must

occur in inside the element

name address.

Rules

We need to follow certain rules if there is more than one element content −

 Sequences − Often the elements within DTD documents must appear in a distinct order. If this is the

case, you define the content using a sequence.

The declaration indicates that the <address> element must have exactly three children - <name>,

<company>, and <phone> - and that they must appear in this order. For example −

<!ELEMENT address (name,company,phone)>

 Choices − Suppose you need to allow one element or another, but not both. In such cases you must use

the pipe (|) character. The pipe functions as an exclusive OR. For example −

<!ELEMENT address (mobile | landline)>

Mixed Element Content

This is the combination of (#PCDATA) and children elements. PCDATA stands for parsed character data,

that is, text that is not markup. Within mixed content models, text can appear by itself or it can be interspersed

between elements. The rules for mixed content models are similar to the element content as discussed in the

previous section.

Syntax

Following is a generic syntax for mixed element content −

<!ELEMENT elementname (#PCDATA|child1|child2)*>

 ELEMENT is the element declaration tag.

 elementname is the name of the element.

 PCDATA is the text that is not markup. #PCDATA must come first in the mixed content declaration.

 child1, child2.. are the elements and each element must have its own definition within the DTD.

 The operator (*) must follow the mixed content declaration if children elements are included

 The (#PCDATA) and children element declarations must be separated by the (|) operator.

Example

Following is a simple example demonstrating the mixed content element declaration in a DTD.

<?xml version = "1.0" encoding = "UTF-8" standalone = "yes" ?>

<!DOCTYPE address [

 <!ELEMENT address (#PCDATA|name)*>

 <!ELEMENT name (#PCDATA)>

]>

<address>

 Here's a bit of text mixed up with the child element.

 <name>

 Tanmay Patil

 </name>

</address>

	Dr. SNS RAJALAKSHMI COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)
	DEPARTMENT OF COMPUTER APPLICATIONS
	WEB DEDIGNING-16UCA504
	UNIT-V
	UNIT-V (1)
	What is xml
	What is mark-up language
	Why xml

	Features and Advantages of XML
	1) XML separates data from HTML
	2) XML simplifies data sharing
	3) XML simplifies data transport

	XML Namespaces
	Name Conflicts
	Solving the Name Conflict Using a Prefix
	XML Namespaces - The xmlns Attribute
	Uniform Resource Identifier (URI)
	Default Namespaces
	Namespaces in Real Use

	XML DTD
	What is a DTD?
	Valid XML Documents
	XML DTD
	Note.dtd:

	Using DTD for Entity Declaration
	Example

	When to Use a DTD?

	XML Information Set
	Infoset augmentation:

	XML Parsers
	Types of XML Parsers
	DOM (Document Object Model)
	Features of DOM Parser
	Advantages
	Disadvantages

	SAX (Simple API for XML)
	Features of SAX Parser
	Advantages
	Disadvantages

	What is an XML Schema?
	XSD Example

	Why Learn XML Schema?
	XML Schemas Support Data Types

	DTD - Overview
	Types
	Features
	Advantages of using DTD
	Disadvantages of using DTD
	Syntax
	Internal DTD
	Syntax
	Example
	Rules

	External DTD
	Syntax
	Example
	Types

	Elements
	Example

	Attributes
	Example

	Entities
	Syntax (1)
	Element Content Types
	Empty Content
	Element Content

	List of Operators and Syntax Rules
	Rules

	Mixed Element Content

